021-31263351

sales@hlelc.com

三相五柱式电压互感器接线图

  三相五柱式电压互感器接线图

  什么是三相五柱式电压互感器?

  一般变压器都是三相三柱式,也就是三相绕组别个绕制在一个铁芯柱上,三根柱上下用铁鄂连接起来。三相三柱式变压器中,没有给零序磁场留出通道,所以零序磁通只能通过空气隙到外壳后回来,形成零序磁通回路,因此这种变压器的零序阻抗都比较大。

  所谓三相五柱变压器,就是除了上述三相绕组有三根铁芯柱以外,两侧还有两根空余没有绕组的铁芯柱,五根铁芯柱的上下都用铁鄂连接起来。这样,零序磁通就通过外面两根铁芯柱与上下铁鄂形成了流通回路。这样的变压器零序阻抗很小。一般来讲,用于实验室和有特殊要求的地方比较多。当然,如果电网都采用这种变压器,可以减少很多零序损耗。

  三相五柱式电压互感器是在三柱铁芯的两侧各增加一个铁芯柱,作为零序磁通的闭合磁路。正因为这种电压互感器使零序磁通有了闭合磁路,就可以增加一组二次绕组,组成开口三角以获得零序电压。

  三相五柱式电压互感器的五柱式哪五柱?

  三相五柱式互感器是用于高压的电压互感器,里面有三组线圈,高压有一组,三个接线柱,低压有两组,一组为低压电压输出,有三个接线柱,另一组为开口三角形接法,首尾相连,留出两个端,主要用于单相接地或者断线检测用。所以共有五个接线柱。

  三相五柱式互感器的接线原理

  电网正常运行时,三相电压对称,开口三角绕组引出端子上的电压Ua1,x1为三相二次电压之相量和,其值为零,但实际上因漏磁等因素的影响,Ua1,x1一般不为零,而有几伏的不平衡电压。

  当电网发生单相接地故障时,电压互感器一次侧的零序电压也感应到二次侧,因三相零序电压大小相等、相位相同,故开口三角绕组输出的电压Ua1,x1=3U0/Kμ(Kμ为电压互感器变比)。

  1)把这种接线用于中性点非直接接地电网中,在电网发生单相(如A相)接地故障时,开口三角绕组两端的3倍零序电压Ua1,x1为3倍相电压。为使此时的Ua1,x1=100V,开口三角绕组每相的电压为100/3V。因此,电压互感器的变比为(UN/√3)/(100/√3)/(100/3)V(UN为一次系统的额定电压)。

  2)把这种接线用于中性点直接接地电网中,在电网发生单相(如A相)接地故障时,故障相A相的电压为零,非故障相B、C相的电压大小和相位均与故障前的相同,开口三角绕组两端的3倍零序电压Ua1,x1为相电压。为使此时的Ua1,x1=100V,故电压互感器的变比为(UN/√3)/(100/√3)/(100)V。

  三相五柱式互感器的接线方式

  电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b相接地和中性点接地两种方式,其接线方式见图1、2。

三相五柱式电压互感器不接地图一 三相五柱式电压互感器不接地原理图

  1.1电压互感器二次绕组两种接地方式的比较

  1.1.1在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地系统,可用辅助二次绕组的相电压同步。

  1.1.2在保护回路中

  在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保护误动作。②因为辅助绕组的一端与b相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线较为复杂。

  在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。

  1.1.3在测量表计回路中

  在b相接地系统中,①因大多数表计均接线电压,其中b相接地公用,引线方便。②对只需接线电压的回路,可用V-V接线电压互感器。

  在中性点接地系统中,表计均需三相分别接入,引线较为复杂。

  1.1.4在电压互感器二次接线上

  在b相接地系统中,①中性点需装设击穿保险器,增加了部件,正常时如击穿保险器击穿接地,将使b相绕组短路。②当A、C两相中任一相发生接地时,即构成二次绕组两相短路,两相熔断器熔断。

  在中性点接地系统中,无b相接地的相应问题,接线较简单。

  据上分析,对于中性点非直接接地系统,因一般不装设距离和零序方向保护,b相接地对保护影响极小,而对同步回路有利,故电压互感器二次侧采用b相接地方式较为理想。而对于中性点直接接地系统,保护要求严格,中性点接地有利于提高保护的可靠性,同步回路可用辅助绕组的相电压,故电压互感器二次绕组采用中性点接地方式较为优越[1]。

  1.2接地原因

  1.2.1电压互感器二次侧须接地的原因

  在运行中,电压互感器的一次侧线圈处在高压系统之中,而其二次侧线圈则为一固定的低电压(如电压互感器一次线圈电压为10KV时,则其二次侧固定为100V)。二次侧线圈所接入的各种仪表和继电器的绝缘等级低,并且经常与人员接触,如果电压互感器的一、二次线圈之间的绝缘被击穿,一次侧的高压将直接加到二次侧线圈上,极易危及人身和设备安全。故为了提高安全性,电压互感器二次侧必须接地。

  1.2.2JB接地

  图1中,当电压互感器通过b相接地时,其中性点处还需要通过JB接地的原因分析如下。

  由于电压互感器二次侧通过b相接地,其只是为各种表计和继电器提供所需电压,不能保证当一次电压串入二次回路时的安全,所以其二次侧线圈的中性点也必须接地。但是,其中性点如果直接接地,b相线圈将通过大地短接,这样会烧坏线圈,这是不允许的。所以电压互感器二次侧中性点通过一个JB(放电间隙)接地。正常运行时JB不导通;当有高压进入二次侧时,JB击穿使电压互感器二次通过中性点接地,达到保护人身和设备安全的目的。(因b相接地点在保险之后,故即使b相和中性点形成接地短路,也只会使保险熔断,不会烧坏线圈)。

  2、电压互感器二次侧保险的工作原理

  2.1二次侧无保险工作分析

  ①在图1中,如果JB在工作状态下因其它原因击穿,则电压互感器b相绕组将被短接,b相绕组将被烧坏。

  ②当A、C两相任一相有过载时,将造成电压互感器绕组烧坏。当A、B、C三相绕组内部有故障时,将引起保护误动作。

  ③在图2中,当电压互感器二次侧A、B、C三相中的任一相出口处有接地发生时,均会造成电压互感器绕组短路运行而烧坏。

  ④当电压互感器二次侧A、B、C三相中的任一相发生过载时,也有可能烧坏绕组,引起保护误动作。

  在上述工作状态下,电压互感器二次侧A、B、C三相出口处,都需加装二次侧保险。

  2.2不加保险(熔断器)的情况

  ①在二次侧开口三角的出线上一般不装熔断器。因为在正常运行时开口端无电压,无法监视熔断器的接触情况。一旦熔断器接触不良,则系统接地时不能发出接地信号。但是,供零序过电压保护用的开口三角出线例外。

  ②中性线上不装熔断器,目的是因为一旦保险丝熔断或接触不良,就会使绝缘监察电压表失去指示故障的作用。

  ③接自动电压调整器的电压互感器二次侧不装熔断器,目的是为了防止熔断器接触不良或熔丝熔断时电压互感器误动作。

  3、三相五柱式电压互感器工作绕组的工作状态分析

  3.1正常时工作绕组的工作状态

  如图3所示,由于三相五柱式电压互感器为配合计量及保护装置,其二次线电压为恒定的100V。为配合绝缘监察,其二次侧对地电压为100/V;100V/V、0V。所以根据图3可得出,Ua、Ub、Uc三相相电压为Ua=l00/V=Ub=Uc,线电压为Uab=Uac=Ucb=100V。正常运行时,Ua0=Ub0=Uc0电压表指示相电压(10kV系统为5.8kV)。

  三相五柱式电压互感器原理图3图3

  3.2故障时工作绕组的工作状态

  ①当系统发生单相金属性接地时(如A相),则该相对地电压为O,即电压瓦感器的A相一次线圈对地无电压。接在二次和接地相对应的绝缘监察电压表Ua=0,而其它两相Ub、Uc的电压升高到倍,即上升到线电压(10KV系统为10KV)。此时工作线圈二次侧对地电压为Ua=0、Ub=0、Uc=100V。

  ②当A相经电弧或高电阻接地时,则Ua电压指示低于相电压,但未达到0。Uc、Ub指示高于相电压,但未达到线电压(当b相接地时,Ub=O)。

  4辅助绕组的工作状态分析

  辅助绕组,即开口三角形。在系统正常运行时,由于系统三相电压UA、UB、UC是对称的,互感器二次线圈中的三个电压Ua、Ub、Uc也对称。故反应在开口三角两端的零序电压为Ua+Ub+Uc=0,所以开口三角两端的电压为零。

  当系统发生单相接地故障时,如C相接地(见图4),显然C相对地电压Uc,加上中性点对C相端头电压-Uc,即UAd=UA+(-Uc)。同理,B

  相对地电压UBd=UB+(-Uc),由于C相接地,电压互感器一次侧的C相线圈上无电压。则UAd和UBd就是互感器一次侧A相和B相的电压。从向量图中看出,加在互感器一次侧的三相电压出现了零序电压,即UAd+UBd=3U0。此时UAd和UBd的大小都是相电压的倍,即数值上等于线电压,其合成电压即为3倍的零序电压。故在开口三角两端也同时出现了3倍的零序电压。在开口三角两端接上绝缘监察继电器,一旦系统有单相接地发生,此绝缘监察继电器即报灯光、音响信号,告诉值班人员处理(一般此继电器整定值为l5V或18V)。